If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4z^2-z-10=0
We add all the numbers together, and all the variables
4z^2-1z-10=0
a = 4; b = -1; c = -10;
Δ = b2-4ac
Δ = -12-4·4·(-10)
Δ = 161
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-1)-\sqrt{161}}{2*4}=\frac{1-\sqrt{161}}{8} $$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-1)+\sqrt{161}}{2*4}=\frac{1+\sqrt{161}}{8} $
| 3(3c-1)-5=6c+7 | | 1/4=y/12 | | 3x+8=42-x | | y÷9=0.8 | | 5y+10=42+y | | 5x−18=3x+2 | | (3x+7)=110 | | -3m—6=-9 | | x+x(x+2)+(x+4)=54 | | 5.4m=24.3m= | | 9(2x-1)+4=18x-5 | | 15225=48x | | -20-a=-45 | | 12-x=33 | | 2+½x=-1 | | 30+h=-50 | | -5+r=27 | | (x+35)=(2x+25) | | 2m+7=21,m= | | 3(2x+1)=4(x-5( | | 2x-4=x=4 | | Y+1-1y=-1 | | (1.25)(2)+(3p)=5.05 | | -20=n-11 | | 3x-2=2x=6 | | 293x-2)+9=-5x | | 28=3x-1 | | 5/4n=8 | | 77x8=334 | | 55x5=275 | | -6.2+1.4x=9.3 | | -5x+3=21 |